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Blood glucose control, for example, in diabetes mellitus or severe illness, requires strict
adherence to a protocol of food, insulin administration and exercise personalized to each
patient. An artificial pancreas for automated treatment could boost quality of glucose control
and patients’ independence. The components required for an artificial pancreas are:
i) continuous glucose monitoring (CGM), ii) smart controllers and iii) insulin pumps delivering
the optimal amount of insulin. In recent years, medical devices for CGM and insulin
administration have undergone rapid progression and are now commercially available. Yet,
clinically available devices still require regular patients’ or caregivers’ attention as they operate
in open-loop control with frequent user intervention. Dosage-calculating algorithms are
currently being studied in intensive care patients [1], for short overnight control to supplement
conventional insulin delivery [2], and for short periods where patients rest and follow a
prescribed food regime [3]. Fully automated algorithms that can respond to the varying
activity levels seen in outpatients, with unpredictable and unreported food intake, and which
provide the necessary personalized control for individuals is currently beyond the state-of-the-
art. Here, we review and discuss reinforcement learning algorithms, controlling insulin in a
closed-loop to provide individual insulin dosing regimens that are reactive to the immediate
needs of the patient.
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Maintaining normoglycemia is one of the
major challenges in the treatment of patients
with diabetes mellitus. Treatment of hypergly-
cemia with insulin may lead to hypoglycemia
that, in turn, may contribute to clinically rele-
vant complications. This implies that calcula-
tion of precise insulin dosages is critical, must
be individually adapted and should be reactive
to the patient’s glucose concentration. World-
wide, more than 371 million people have
diabetes mellitus [4], and its management can
involve both constant glucose monitoring and
insulin dosing, seriously affecting quality of
life. This has led to intensive research concern-
ing the development of an artificial pancreas
since the 1970s [5].

There are three components of an artificial
pancreas: i) continuous glucose monitoring
(CGM) using an implanted sensor, ii) an

insulin pump delivering insulin and iii) an
algorithm calculating the correct dose of insu-
lin to be applied. In this article, we briefly
describe the major challenges for development
of an artificial pancreas system and discuss the
application of machine learning algorithms as
a potential approach to increase the efficiency
of the system in terms of versatility and safety.
Since the development of the first artificial
pancreas system [5], major improvements have
been made, but the system still needs develop-
ment before it can be routinely used in clinical
practice and everyday life. To date, one of the
major limitations of the successful use of auto-
mated dosing in clinical, as well as outpatient,
settings is the demand for an adaptive algo-
rithm that individualizes the artificial pancreas
to the special needs of each patient. Independ-
ent of the control model used, the components
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of an artificial pancreas system all bear their own challenges.
These are either derived from technical aspects or based on the
physiology of glucose regulation and have to be kept in mind
during the development of control algorithms for insulin
dose calculation.

Continuous glucose monitoring

Measuring the blood glucose concentration provides the minimal
requirement for calculation of the insulin dose. Patients with
type 1 diabetes are recommended to check their blood glucose
concentrations at least three times a day [6]. More frequent glu-
cose measurements allow for the overall trend of the blood glu-
cose concentration to be estimated, as opposed to isolated
measurements with no information on whether blood glucose
concentrations are increasing or decreasing [7]. As finger pricking
can be painful, a less invasive method enabling the patient to
perform more frequent measurements is highly desirable.

Among various CGM sensors (for review on CGM sensors
please refer to [7]), subcutaneously implantable sensors are most
comfortable for the patient. Due to an evaluation roadmap for
CGM sensors presented by the Clinical and Laboratory Stand-
ards Institute [8], the most important challenges for CGM devi-
ces to date relate to the accuracy of the measurement, as well
as to the real-time assessment.

The accuracy of subcutaneous glucose measurement devices
has been subject of a long-lasting debate. In such devices, the
sensor detects glucose in the interstitial fluid during its diffu-
sion between the capillary and the target cell [9]. Under steady-
state conditions, interstitial glucose concentrations have been
shown to be similar, but not precisely equal to, venous blood
glucose concentrations in healthy individuals or animals [10–12].
Rapid changes in blood glucose concentrations have been
reported to affect the accuracy of the interstitial glucose sens-
ing, namely causing the sensor to report glucose concentrations
below their actual values [13,14]. Implanted intravenous glucose
sensors, which would provide similar comfort, as well as faster
and more accurate blood glucose measurements, are currently
under investigation [15,16]. However, to date subcutaneous meas-
urement is still preferred due to lower risk of thrombosis and
intravascular infection.

Real-time assessment of subcutaneous glucose measurement
devices describes the lag between measurement of the glucose
concentration by the sensor and the time at which the blood
concentration of insulin, delivered in response, reaches its maxi-
mum. A large delay reduces the ability of the system to
respond to glucose concentrations in real-time and therefore its
performance. FIGURE 1 summarizes the sequence of events, from a
change in blood glucose in the body to the maximum effect of
the insulin administered in response [17]. First, changes in blood
glucose concentrations are mirrored by the interstitial blood
glucose concentrations after a 5–10 min delay [18,19]. Measure-
ment of those interstitial glucose concentrations is commonly
performed either by electrochemical sensors [20] or microdialysis
techniques [21], which both take another 3–12 min [18]. Next,
the digital filtering of the glucose measurement can take
another 1–2 min, and is required to compensate for back-
ground noise. At this point, the algorithm will take some time
to calculate the correct dose, but it is expected to be compara-
tively rapid. Finally, after insulin application, there is a delay
before insulin becomes fully active in the blood. The latter
depends on the type of insulin analog used, the total insulin
dose and the individual pharmacokinetic parameters of the
patient. Taken together, this can introduce a time delay
between changes in blood glucose and insulin effect of up to
1 h, which any dosage calculation will have to accommodate.

Drug delivery: insulin administration

Since the first studies on insulin treatment of patients with dia-
betes [22,23], which have led to the Nobel prize for Frederick
Banting and John Macleod, insulin delivery devices have seen a
number of development phases that have improved their per-
formance and ease of use. For example, the time delay between

Change in blood glucose level

Physiologic lag time
between blood and

interstitial glucose level
5–10 min

Change in interstitial glucose level

Measurement of
interstitial glucose level

by sensor
3–12 min

Digital filtering
of sensor signals

1–2 min

Run time of the algorithm
max. 2 min

Insulin application

Full insulin activity in blood
depends on insulin type

(rapid-acting, short-acting,...)
> 30 min

Figure 1. Stages of the time delay between blood glucose
concentration and maximum blood insulin concentration
leading to a lag time of approximately 1 h.
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application of insulin and the maximum
plasma insulin concentration mentioned
above have already been shortened by
the availability of rapid-acting insulins.
Furthermore, other administration routes
also bear the potential to decrease the
time until the maximum effect of insulin
occurs.

Intravenous insulin application, which
would enable the fastest insulin effect,
exhibits certain limitations due to cathe-
ter complications [24]. Intraperitoneal
insulin is difficult to administer [25], and
the availability of intraperitoneal insulin
devices is currently limited. Inhalation
might provide a novel application route
for insulin, and suitable medical devices
have been approved by the US FDA in
2008 [26]. But the bioavailability of
inhaled insulin is less than in a subcuta-
neous application and is extremely variable in smokers or
patients with a cold [27]. Pharmaceuticals for oral delivery of
insulin are currently under development [28,29] but are far from
routine clinical use.

Wide availability and ease of management are the major advan-
tages of subcutaneous insulin administration [24]. This currently
makes the subcutaneous application route the most appropriate
for routine injections and thus also for an artificial pancreas.
When CGM is also performed subcutaneously, the system is com-
monly referred to as subcutaneous-subcutaneous (sc-sc) systems.

Dosage decisions: the controller is key

The control algorithm represents the key component of the
artificial pancreas, because it provides the link between changes
in blood glucose concentrations and the respective treatment
response, that is, insulin delivery. In contrast to conventional
insulin treatment with pre-programmed pumps, an artificial
pancreas aims at modulation of insulin delivery in intervals
close to real-time, in response to blood glucose levels, and
facilitated by a control algorithm.

Contemporary algorithms forming the ‘brains’ of any auto-
mated drug delivery device attempt at dealing with both the chal-
lenges derived from the limits of CGM and insulin as well as from
the glucose regulatory system itself. In the next section, different
types of control algorithms as well as challenges of the glucose reg-
ulatory system for such algorithms are described and discussed.

Control algorithms & challenges
In standard diabetes treatment, the patient receives a subcutane-
ous injection of slow-acting insulin to provide the basal insulin
requirement. Additional insulin doses of rapid-acting insulin
are calculated based on the patient’s knowledge of a meal size,
the patients experience, the insulin sensitivity and actual blood
glucose concentrations measured indirectly, for example, by a
subcutaneous CGM system. Insulin boluses are preferably

delivered by an insulin pump to avoid repeated injections. As a
key performance indicator, an average plasma glucose concen-
tration of glycosylated hemoglobin (HbA1C) values <7% was
recommended by the American Diabetes Association [6] and
has been shown to reduce the development and progression of
microvascular and cardiovascular complications by 76% [30].

Open-loop vs closed-loop control
Models that calculate an insulin dosage based on blood glucose
concentrations and external (meal) information have been called
examples of open-loop control [27]. Despite the advantages of the
intended avoidance of hyper- and hypoglycemic excursions by
use of an artificial pancreas system, any open-loop insulin con-
trol mechanism requires the patient to live a more or less pre-
dictable lifestyle. By contrast, closed-loop control models include
the benefit to finally reduce the patients’ need to plan each day
with regard to their illness, thereby improving quality of life (for
review about open- and closed-loop models please refer to [31]).
Closed-loop models can be further distinguished as either fully
closed-loop models or hybrid models. In a fully closed-loop
model, decisions for insulin dosing are exclusively based on
parameters measured in the patient’s body, for example, blood
glucose concentrations [27] without knowledge of external infor-
mation like food or exercise. In brief, changes in blood glucose
concentrations would be measured and, based on these changes,
the respective insulin dosage calculated and applied. Administra-
tion of insulin then affects the blood glucose concentration.
Based on this feedback from the blood glucose concentration,
the required concentration of insulin is again calculated and the
next dose may be adjusted (FIGURE 2). Such a system is reactive,
meaning no anticipation and preemptive dosing based on exter-
nal information is possible (i.e., did the patient enter an ice
cream shop). However, the closed-loop algorithms could factor
in prior experience of glucose dynamics. A second major chal-
lenge for fully closed-loop models is to accommodate situations

External information Closed-loop control

Body

Algorithm:
calculation of

insulin dose and
time of injection

Insulin
application

Meals,
exercise,

...

Changes in
(blood) glucose levels

measured by CGM

Figure 2. Closed-loop control model for insulin delivery with (hybrid model, dot-
ted line) and without external information. In the latter case, the algorithm reacts
directly on the changes in glucose concentrations evoked by meals or exercise without
getting external information.

The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas Review

www.expert-reviews.com 663

E
xp

er
t R

ev
ie

w
 o

f 
M

ed
ic

al
 D

ev
ic

es
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
Im

pe
ri

al
 C

ol
le

ge
 o

n 
04

/1
0/

14
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



in which the blood glucose concentration changes rapidly, such
as after meals or exercise. Adequate and timely reactions of the
artificial pancreas on these rapid changes are hindered by a large
time delay due to both glucose measurement as well as insulin
action. One would assume that the real pancreas works in a
closed-loop system without this knowledge as well, however,
recent work suggests that there’s a tighter link between brain and
pancreatic function [32,33].

Hybrid control
Hybrid models using both closed-loop control and external
information, for example, of meal size (FIGURE 2), have therefore
been proposed. In a recent study, Weinzimer et al. compared
fully closed-loop control with their hybrid or extended closed-
loop control, in which an additional premeal bolus was
used [34]. The hybrid model reduced hyperglycemia after meals
without inducing hypoglycemia [34], and the same result was
seen in a similar model tested by another group in hospital set-
tings [35]. In both studies, patients were already in excellent gly-
cemic control, and thus hypoglycemia was neither observed
with the hybrid, nor the fully closed-loop control model [34,35].
However, these hybrid models still need to be tested for control
of potentially hypoglycemic conditions and in their present
form need explicit user input and action. Hybrid models may
have a physiological basis, as recent data suggest hypothalamic–
pancreatic connectivity (from central to autonomous nervous
system [32,33]) which could convey information about planned
meal intake and could potentially therefore be closer to the
type of information available to the pancreas, than closed loop
models. However, the brain’s knowledge that ‘I am queuing for
an ice cream’ does not inform the pancreas about the exact
composition of the meal. Therefore, it has to be tested whether
the hybrid model might in the future be replaceable by a fully
closed-loop model to reduce the required frequency of
user interventions.

Despite the good performance of hybrid closed-loop model
with external information, the overall aim is to develop a fully
closed-loop model to obviate the need for diabetes patients to
lead a scheduled lifestyle in regard to meals and exercise. One
way to achieve this is to develop an algorithm that automati-
cally detects meals by checking the blood glucose curve and
either advises the patient or the automated insulin pump to
apply an insulin bolus. A first attempt to develop an analytic
model that, at least partially, anticipates fluctuations in glyce-
mia, was performed by development of algorithms for meal
detection or meal size estimation [36,37]. When compared
in silico with closed-loop control without information on meals,
the meal size estimation algorithm improved the time spent in
normoglycemic range and even reduced the HbA1C from
7.15% (treatment without algorithm) to 6.43% (treatment
with algorithm) in adolescents and from 6.69 to 6.23% in
adults [37]. However, the average detection time of the onset of
a meal was at least 29 or 31 min, respectively [36,37]. Given the
additional delay of insulin action, this might be too late for
appropriate insulin delivery using current insulin formulations.

Furthermore, the amount of false-positive (6.75%) and false-
negative (18%) detections [37] increases the risk of incorrect
insulin administration and has to be improved to facilitate a
safe application in patients. Long-term studies should be per-
formed in various settings to detect whether this addition of
complexity to the glucose control system is worth the effort.
Meal detection is only one out of many challenges for closed-
loop systems of insulin delivery control.

Traditional algorithms for control: PID, MPC, Fuzzy
The development of algorithms for closed-loop calculation of
insulin dosage is intensively investigated. The major candidates
for such algorithms proposed in recent years use proportional
integrative derivate (PID [35,38–40]) methods or model predictive
control (MPC [1,37,41–56]). The PID systems consist of three
components: the proportional (in case of diabetes the difference
between the actual glucose concentration and the desired glu-
cose concentration – the error), the integral (accumulation of
past errors over time) and the derivative (the rate of change of
these errors) [57]. In short, the PID algorithm estimates the
required control (in case of diabetes the required delivery of
insulin) based on a weighted sum of PID terms, in order to
minimize these errors and so bring the system to the desired
glucose concentration [57]. Current MPC systems require a
model (typically a dynamical systems model) that can predict
future glucose concentrations given known values for current
glucose, insulin delivery and food intake. Such control then cal-
culates the appropriate insulin infusion rate by minimizing the
difference between the model-predicted glucose concentration
and the target glucose concentrations over a prediction time-
window [2,58]. The duration of this time-window is chosen as
the time in which the bulk of the effect is seen from the insu-
lin or insulin analog used.

Conventional MPC algorithms suffer a number of issues that
would need to be addressed for their safe application in outpa-
tient use. First, MPC assumes a perfect model and control calcu-
lations are based on this assumption. Imperfections in the model
lead to differences between the expected and actual evolution of
the system, and this means that the control must be recalibrated
at each step. This brings an online computational expense, and
more importantly there is no explicit information about how
uncertain the model is (see section ‘How to control in the face of
uncertainty?’). Second, conventional MPC operates on a purely
dynamical systems description model [2,58], and external disrup-
tions to the system due to, for instance, meal intake or physical
activity, which are not captured by the model, can only be
reacted to after the event; MPC cannot compensate for the risk
of these events in advance.

Recent advances in MPC control attempt to compensate for
the first of these shortcomings. For instance in [48], the authors
adapt the MPC algorithm to target a range of states instead of
a single target state, and the approach proposed in [51] allows
the aggressiveness of the control to be adapted in order to
trade-off the rapidity of a return to normoglycemia against the
amount of insulin used (and hence the risk of overshoot into
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hypoglycemia); a trade-off made necessary by the imperfections
of the model. These approaches are not truly adaptive in the
sense that they shape their models in response to the available
data. Instead, they are heuristic tuning approaches using a static
model, and deviations of future state from what is predicted by
the model are, just like conventional MPC, responded to in
subsequent time-steps by updated responses to this state (again
based on the imperfect model). To our knowledge, there are
no existing MPC methods that address the second issue. Simi-
lar approaches using optimal control instead of MPC have also
been suggested in the context of the artificial pancreas [39]. To
the authors’ knowledge, appropriate methods have yet to be
realized, and these would suffer similarly in terms of reliance
on appropriate models.

Fuzzy logic approaches have also been proposed for the con-
trol of the artificial pancreas, for example, see [3,59]. Fuzzy logic-
based control approaches for the artificial pancreas use a system
of if-then-else statements to determine when to apply insulin
and the associated dose. These methods are not based on crisp
empirical models of a patient’s metabolism, but are sets of binary
conditions and must be developed in collaboration with experts,
for example, caregivers [3]. For this reason, each condition-
response rule must be explicitly encoded into the policy, are
subject to human error and omission and they cannot readily
incorporate knowledge from existing biological models, so there
can be no theoretically grounded performance guarantees.

In summary, the PID and fuzzy logic approaches are purely
reactive and lack the theoretical underpinnings of a model,
whereas MPC algorithms represent a more proactive approach,
but require a good model of the dynamics and have a limited
capacity to compensate for an imperfect and/or changing
model. Ultimately, all existing MPC approaches for the artifi-
cial pancreas are based on a model that is defined at the level
of the pancreas, but the glucose-insulin regulatory system does
not represent the whole picture (see section ‘How to control in
the face of uncertainty?’).

To date, there is only one closed-loop algorithm commer-
cially available, that is, the B. Braun Space GlucoseControl (B.
Braun, Melsungen, Germany). This algorithm is based on
MPC [1,60] and is provided for use in insulin treatment of crit-
ically ill patients in intensive care units (ICU). Such patients
often develop peripheral insulin resistance and relative insulin
deficiency with resulting hyperglycemia [61]. Among others, this
endocrine paradigm leads to increased gluconeogenesis from
the body’s stores and reduced glucose uptake and utilization.
The former notion that resulting hyperglycemia would redis-
tribute glucose toward organs that rely on glucose as fuel and,
consecutively, improve the chance to survive was disapproved
by evidence [62]. Indeed, dysregulations of glycemia are associ-
ated with a negative outcome. However, bringing glucose back
to normoglycemia in the critically ill by insulin infusion has
shown to be a double-edged sword, since hypoglycemia and
fluctuations of glycemia offset beneficial effects of glucose con-
trol when the target range is set too low [61]. Therefore, critical
care societies recommend controlling glycemia below 145 or

180 mg/dl, respectively [6]. Glycemic control by the one com-
mercial algorithm initially required an hourly measurement of
glucose [63], but recent adaptation of the algorithm has deres-
tricted this constraint [64]. This algorithm is currently only used
for critically ill patients and is exclusively applicable in the special
setting of intensive care. Though integrated closed-loop glucose
control is very promising in clinical settings [65], algorithms for
home patients might raise the concern of missing control by
human sense. This can be overcome by including an optional
user-check of the insulin dosage values calculated by the algo-
rithm, for example, by providing the algorithm as a smartphone
application as recently reported by Cobelli et al. [66]. Despite the
potential inclusion of a user-check, further improvements to the
accuracy and robustness of an insulin calculating algorithm for
independent outpatient use are highly desirable.

How to control in the face of uncertainty?
Uncertainty is a general concept in control and is the result of
noise (randomness), ambiguity about the true state of variable
and any other imperfection in the controller’s predictive capabil-
ities. Any control algorithm (and likewise the pancreas) has to
operate in the face of uncertainty about: i) the physiological
state, including the glucose level in the blood and the amount of
ingested sugars in the gut, etc.; ii) variability in physiological
processes across individuals (and within individuals during the
course of the day); iii) the true dynamics of the model, as the
interdependency between observed and unobserved variables
may only be partly understood; iv) the evolution of the biologi-
cal system, even if state and model is known precisely, system
noise leads to uncertain outcomes; v) exogenous future events,
such as food intake and physical activity which induce significant
disruptions to the dynamics and vi) time delays in sensing state,
this increases uncertainty about the current state meaning deci-
sions are based on past information that may no longer be valid.

There are four major challenges to control the glucose sys-
tem with an artificial pancreas as optimal effectiveness and per-
formance require i) accurate sensor readings, with minimal
time delays in ii) reading out physiological variables (sensing)
and iii) acting on these (drug delivery action and effect).
Finally, as every patient is different and has a different metabo-
lism and lifestyle that can change with time, there is a need for
iv) genuinely personalized medical treatment that adapts to the
individual and their changing needs.

Of these challenges, the inter- and intraindividual variability
of the diabetes patients most starkly raises the need for individ-
ual algorithms reacting on the special glucose-insulin pattern of
each single patient. The differences in severity of the disease as
well as in insulin sensitivity between patients and even during
the life of a single patient require a continuous adaptation of
the algorithm to the patient. Furthermore, individual meal
uptake has a highly variable impact on the glucose concentra-
tion in the blood depending on the composition of the meal.
The effect of situations like exercise, different levels of stress or
illness on glucose homeostasis varies as well. These examples
show that an algorithm for an artificial pancreas has to react
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very quickly to rapidly changing situations influenced by abun-
dant parameters to provide a sensible calculation of insulin.

For these reasons, we need to use techniques that adapt to the
system as a whole, not least because the mechanism underlying
the control of the biological pancreas is much more involved
than was previously thought [67]. The algorithm has to learn
models that are rich enough to describe the interplay between
food intake, physical activity and insulin dynamics in the wild.
We argue, that machine learning in general, and reinforcement
learning (RL) in particular, provides the tools to describe and
control such systems in an expressive and adaptive way.

Future trends
In order to develop an algorithm appropriate for an outpatient’s
artificial pancreas, a number of issues still need to be addressed
including the response to meals, exercise, stress and sleep. To
adequately deal with these situations, the algorithm either has to
be explicitly developed to identify and respond to each situation
separately, or its overall flexibility will have to improve, that is,
by more closely mimicking the physiological function of a work-
ing human pancreas. The former approach is not promising, and
so in the following section we will discuss the potential for
improving the flexibility of such an algorithm.

Adding diagnostic indicators

Glucose homeostasis is maintained by various parameters includ-
ing glucagon, epinephrine, insulin and others [68]. Some of these
parameters may be useful indicators of food intake or stress levels
for closed-loop control systems, obviating the need for external
information. Incretins, for example, could be a useful indicator
of food intake. Upon ingestion of a meal, incretins such as the
glucagon-like peptide 1 (GLP-1) and gastric inhibitory peptide
(GIP) promote the first phase secretion of insulin in proportion
of the glucose content of the meal [68,69]. Measurement of active
GLP-1 after meals could therefore indicate that glucose concen-
trations will soon be elevated and insulin dosing could be admin-
istered earlier, in anticipation of this. Unfortunately, GLP-1 is
degraded by the dipeptidyl peptidase IV after approximately
2 min [69], making it difficult to detect. Present assays available
for GLP-1 detection would have to be refined before routine
measurement of GLP-1 could be used in this way.

After measuring a parameter like glucose or in the future
GLP-1, the relationship between the parameter and the appro-
priate insulin dose response will have to be found. The first,
original ‘minimal model’ of the insulin–glucose relationship
was based on mathematical models of glucose and insulin
kinetics only [70], subsuming the regulatory roles of many organ
systems in these two compartments. Instead, current research
uses models of physiologically based pharmacokinetics/pharma-
codynamics. In these models, each organ system is treated as a
separate compartment [68]. For example, the mixed meal model
of Roy and Parker displays the absorption of the major com-
partments of a meal from the gut [71]. These models are cur-
rently used for simulation of diabetes and evaluating algorithms
in silico. However, they can also be used to predict the

pharmacodynamic response to hypothetical dosing strategies,
and may, therefore, be incorporated into a future algorithm.

Beyond insulin: drugs regulating glucose homeostasis

Mimicking the physiological insulin pharmacokinetics in diabe-
tes treatment is very demanding, especially for a dosage calculat-
ing algorithm. In a healthy pancreatic beta-cell, an increased
blood glucose concentration and therefore the stimulation of the
beta-cell by glucose induces a biphasic insulin release [72]. Due to
the increment in plasma glucose concentrations, a rapid peak of
insulin secretion is followed by a slowly increasing second phase
of insulin secretion [72]. The peak phase of insulin secretion is
due to pre-formed insulin stored in mature vesicles and is
thought to suppress the hepatic glucose output [73]. The second
phase requires new synthesis of proteins and increases slowly
until the cell is adapted or the glucose stimulation ends. This
biphasic profile of insulin secretion presents the researchers with
the need of implicating the pharmacokinetics of different analogs
of insulin into the calculations of the control algorithm. The
time delay between application of insulin and the maximum
plasma insulin concentration mentioned above have already been
shortened by the availability of rapid-acting insulins (for review
on insulin analogs see [74]). However, the fact that minimizing
this time delay would markedly help to ensure normoglycemia
in closed-loop models of artificial pancreas has raised the request
for ultra-rapid-acting insulins. To achieve such a biphasic profile
of insulin secretion, computational scientists need to include the
pharmacokinetics of different analogs of insulin into the calcula-
tions of the control algorithm.

Another key player in glucose homeostasis is glucagon. Its
role has been included in recent dynamic models and inclusion
of such models in the artificial pancreas would more closely
mimic the physiological pancreas reactions and thereby increase
the flexibility and accuracy of the system. In a healthy pancreas,
glucagon counters the effects of insulin, thus leading to eleva-
tion of blood glucose concentrations. Recently developed artifi-
cial pancreas systems apply pumps capable of both insulin and
glucagon application [75]. Two independent research groups
reported glucagon treatment to prevent and to reverse hypogly-
cemia in bihormonal closed-loop systems [75,76]. Minimizing
glucagon dosage in two studies avoided side effects like nausea
or gastrointestinal discomfort [75,76], though long-term studies
remain to be conducted. Thus, glucagon treatment represents a
promising option and should be considered in future develop-
ment of control algorithms for artificial pancreas.

In addition, recent research has focused on the usability of
new drugs regulating the glucose homeostasis. Amylin, for
example, is a peptide hormone co-secreted with insulin by the
pancreatic beta-cells which has similar functions to insulin [77,78].
Application of amylin was successfully tested in clinical trials [79]

and even in closed-loop systems of combined insulin and amy-
lin delivery [80]. In addition, the peptide GLP-1 could not only
be measured for prediction of the correct insulin dose but may
also be administered in addition to insulin [81,82]. However, exe-
natide, the first US FDA approved GLP-1 agonist, is still
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assigned with a safety alert because it
was associated with altered kidney func-
tion as well as hemorrhagic and necrot-
izing pancreatitis [83].

All these modifications mentioned
might increase the flexibility of the artifi-
cial pancreas systems, but may also
increase the complexity of the algorithms
used. This issue might be addressed by
using learning algorithms, which allow for
dosing control to be flexibly optimized
with respect to the biological system.

Personalized medicine through

(machine) learning algorithms

The complexity of insulin delivery and
the demanding goal of maintaining nor-
moglycemia necessitate a complex, adap-
tive and flexible algorithm, which may be achieved with the
use of machine learning techniques as shown in some
approaches [84–90]. Appropriate machine learning algorithms are
able to analyze training data, recognize complex patterns and
on the basis of such patterns apply the knowledge to other data
to predict their behavior [91]. The principle of a learning algo-
rithm is depicted in FIGURE 3.

There are three general differences between traditional PID
and MPC algorithms used for diabetes so far and machine learn-
ing approaches [91]. First, machine learning is based on recogni-
tion of patterns instead of implication of defined hypotheses. It
improves the accuracy of the system, because it includes initially
unidentified variables that might be overlooked by the tradi-
tional hypothesis-based systems [91]. A second advantage of
machine learning approaches is that they consider interactions
between variables instead of minimizing or ignoring them as tra-
ditional models do [91]. This might result in more complex mod-
els, but the challenges resulting from glucose homeostasis
mentioned above justify their use for diabetes treatment. Third,
machine learning approaches imply the risk of developing a
model which can perform perfectly on the training data without
generalizing well to unseen data, called over-fitting [91]. It is
therefore important to correct for over-fitting by using cross-vali-
dation [92] and regularization techniques [91].

The first attempt toward including machine learning algo-
rithms into diabetes care was the use of supervised learning with
artificial neural network (ANN) classification for diabetes treat-
ment [93]. ANN algorithms infer a function minimizing the error
between calculated parameters and desired parameters with the
help of supervised/labeled training data. Of note, in supervised
learning, the labeling of data needs to be performed by an expert,
which is time consuming and prone to human error. In terms of
blood glucose concentration prediction and insulin regimen rec-
ommendations, ANNs work well in short-term predictions [88]

even in closed-loop systems [94]. However, they have not yet
been tested for long-term predictions of the blood glucose con-
centration. Supervised learning systems, such as that used by

Robertson et al., need good training data which include the
desired response [93]. These data can be expensive and/or time-
consuming to collect, they assume that good responses are
known, and in general only lead to reliable predictions for situa-
tions similar to those in the training data [92]. Furthermore, glu-
cose control in diabetes patients is an ongoing task requiring
regular control responses. The static input-output nature of
supervised learning ignores this and therefore errors might prop-
agate. An alternative approach is to describe the metabolic sys-
tem as a process, with more desirable and less desirable
metabolic states, and which responds to insulin doses (and other
activities) by changing between these states. Learning directly on
such a process can avoid the need for these expensive error-
prone static labels and improve the coverage of solutions. To
find a good control strategy for this process, we need an adaptive
machine learning approach that can be trained directly on such a
model, and this suggests the use of RL algorithms.

The need for reinforcement learning in glucose
regulation
RL is a branch of machine learning, concerned with how an
agent chooses actions to control a system. It is suited to
problems including sequences of decisions along a timeline.
Additionally, it can be used when decisions depend on the
observed state, where effects may be remote in time from
actions that induce them, and where there is some notion of
preferred state(s) for the system. This is true for the artificial
pancreas system, as there is a need to continuously observe
the patients glucose concentration and determine the ideal
time and amount for insulin delivery. Moreover, RL can be
performed directly on real data, or it can interact with a
dynamical system represented by a mathematical model and
in general it makes very modest assumptions about this sys-
tem [95]. A broad classification of the types of control algo-
rithms in terms of performance (glucose control, amount of
delivered insulin, reaction time of the system) or personaliza-
tion is shown in FIGURE 4.

Input
parameter

Calculation
Calculated

output
parameter

Learning Comparison

Desired
output parameter

Figure 3. Principle of a learning algorithm. Comparison of the calculated output
parameter with the desired output parameter leads to learning of the algorithm.
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The principle of RL is based on the interaction between a
decision-making and self-learning agent and its environment.
At each time point, the agent chooses an action to modify
the environment. The environment changes its state and
sends this information and a numerical reward according to
the previous action back to the agent. Mapping of a particu-
lar state to a certain action is called policy of the algorithm
and defines the behavior of the agent at each time step [95].
The goal of RL is to learn an optimal policy and thus maxi-
mize the amount of reward it receives over time [95]. To
achieve that goal, the agent should not only choose the action
which brings the most reward in one run (exploitation), it
should also consider other possibilities to increase the overall
reward (exploration). A balancing between exploitation and
exploration is needed to generalize from experience. The
agent need to explore unusual states in the system by occa-
sionally choosing unpromising actions during the learning

procedure, in order to choose good
actions for even these rare states during
normal operation. The procedure of a
RL algorithm for diabetes is depicted
in FIGURE 5.

In comparison with other traditional
control strategies, RL does not require a
detailed description of the environment
in terms of a well-represented model [96]

or labeled training data as in supervised
learning strategies. After a learning pro-
cedure, the agent develops a policy and
thus a control strategy from experience
to predict certain situations and rewards
without a necessary mathematical speci-
fication of the environment. Another
advantage of RL algorithms is that they
are uniquely suited to systems with
inherent time delays [97] as these are
present due to the subcutaneous glucose
measurements and insulin injections. RL
can also be used with large or even
infinite state sets, which makes that
approach useful for the different glyce-
mic concentrations that occur during
continuous glucose measuring.

Two potential criticisms of conven-
tional RL methods are relevant to the
case of insulin delivery control: The
learned control is black-box, meaning it
cannot be readily reused or generalized
from, and they are not very efficient in
terms of data. The efficacy issue arises,
because conventional RL algorithms do
not build explicit models of the envi-
ronment, and are therefore sometimes
referred to as model-free RL. To address
this, we recommend the use of one or

both of the following techniques: model-based or data-efficient
RL. Model-based RL builds a dynamical model of the control
problem through experience and uses this model to train an on-
board model-free RL algorithm, for example, Dyna-Q [98].
Here, we define a model-based RL algorithm as one that main-
tains a system model, which is updated on-line, for example,
from real data as it is observed, and which optimizes a rein-
forcement learner using this model. This model can be either
entirely constructed from empirical data, or can use prior
knowledge to constrain the family of models considered. For an
insulin delivery system, a model-based reinforcement learner
could therefore define a priori a dynamical system structure
where blood glucose depends on insulin and beta-cells in a
specified way, but use real data to update parameters of that
model. Data-efficient RL algorithms focus on making the most
efficient use of experience gained so far, for example, fitted-
Q [99]. The latter approach has been proposed for use in clinical
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Figure 4. Commonly used types of algorithms for glucose control as well as
machine learning and reinforcement learning algorithms. The y-axis reflects
qualitative dimensions along which we expect performance (tracking target values, while
minimizing dosage and maximizing desirable effects) to reside, whereas the x-axis reflects
dimensions for increased personalization potential. The integration is based on our general
assessment of the type of algorithms used (colored ‘clouds’ reflecting control engineering
derived algorithms [earth colors] and machine learning derived algorithms [sea colors]). The
references inside the clouds are to be seen as illustrative examples without ranking (color figure
can be found online at: www.expert-reviews.com/doi/full/10.1586/17434440.2013.827515).
MB: Model-based; MF: Model-free; MPC: Model predictive control; PID: Proportional
integral derivative control.
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domains [96,100], and recent work, which
combines this with a model-based RL
approach, has shown remarkable data
efficiency in robotics tasks [101].

To date, RL algorithms have been
proposed for the treatment of epi-
lepsy [96], renal anemia [102] or the con-
trol of anesthesia [97]. In case of renal
anemia, the RL algorithm was informed
by an MPC, showing that these two
approaches do not necessarily exclude
each other but can be used in parallel.
When used in closed-loop control of
anesthesia in silico, a RL algorithm
outperforms a PID control algorithm
by less overshoot of the depth of hypno-
sis and faster achievement of steady
state [103]. Thus, use of the RL algo-
rithm in this closed-loop control setting
resulted in tighter control, a principle
that could be administrable for patients
with diabetes. An initial study on using
a RL algorithm to control an artificial
pancreas reported good performance in
controlling hyperglycemia in silico [25]. In this study, the state
was defined as different glycemic ranges, action was defined as
insulin infusion and reward was set equal to the difference of the
glucose concentration from its target value [25]. In silico applica-
tion of the algorithm led to correction of hyperglycemia to nor-
moglycemia. However, given the criticism on RL mentioned
above it is important to point out that this research used purely
model-free RL in an off-line manner on a fixed model with fixed
parameters, which is distinct from a model-based reinforcement
learner that updates its model on-line (and typically consists of
an internal adaptive model coupled with the more conventional
model-free RL). There is no description of how to verify the
accuracy of the model or how to adapt the controller to individ-
ual patients, although the authors do acknowledge that these are
research issues. Furthermore, the tests included in silico patients
only and were especially not yet performed in vivo. The same is
true for an actor-critic control algorithm inspired by the princi-
ples of RL, which showed promising results in adults and chil-
dren in silico, but still has to be verified in a clinical trial [104].
Moreover, the authors do not discuss how the early exploratory
phase of the algorithm can be safely achieved in vivo. Thus, only
a first proof of principle for the usability of RL algorithms in
diabetes has been successfully performed. It would be worth
comparing such RL algorithms with other algorithms in a larger
setting in future studies and to further exploit their full potential
in terms of flexible reactions on changes in the blood glucose
concentrations of diabetes patients.

Expert commentary
Algorithms for closed-loop models of insulin treatment have to
deal with demanding challenges due to the complex physiology

of glucose homeostasis as well as technical limitations of the
components of an artificial pancreas. The flexible reactivity
especially required for outpatient use suggests the use of data-
driven machine learning algorithms. Among those, RL algo-
rithms exhibit a great potential to deal with the time delay
produced by the CGM system. In view of the available evi-
dence, it can be summarized that RL algorithms provide a very
promising approach for flexibly and independently maintaining
normoglycemia in artificial pancreas systems. To date, the vast
majority of papers reporting the development of algorithms
demonstrate control in limited scenarios in silico, for example,
an insulin spike after a single meal. We assert that stochastic
models are essential to assess the reliability and stability of an
algorithm for periods containing multiple meal events, whereas
future in vivo studies of closed-loop algorithms are required to
reliably assess performance and personalization.

Five-year view
In the future, minimization of the time delay between changes
in the glucose concentration and the full effect of insulin as
well as maximization of the accuracy of the subcutaneous glu-
cose measuring devices will be the subject of studies on the
components of artificial pancreas. Ultra-rapid acting insulins
are under development as well as substances like GLP-1 or
amylin, increasing the applicability of these approaches to glu-
cose regulation. However, the more other substances for regula-
tion of blood glucose come up, the more individual and
flexible becomes glucose control, and the more complex. This
increases the need for smart, personalized algorithms calculating
insulin delivery in the future and might among others be
achieved by the use of RL algorithms. In the future, closed-

State:
(blood) glucose

level

Numerical reward
reflecting the

outcome of the
previous action

Environment:
glucose-insulin

balancing

Action:
Insulin injection
or no treatment

Agent:
decision for insulin

dosage

Figure 5. Reinforcement learning algorithms for diabetes. Changes in the state
lead to an action of the agent, which changes the environment. The agent receives a
numerical reward from the environment, which together with the next status will
influence the next action.
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loop drug delivery such as here in the case of insulin could be
complemented with context-aware info-services (as developed
on smartphones) to tune closed-loop drug delivery systems to
the patient’s momentary state.

Currently, control system and adaptive control system
approaches to insulin delivery are based on systems that can
only be adaptive up to the point of delivery to the patient, due
to regulatory demands. However, true patient personalization
requires the ability of the system to adapt to the changing daily
routines of patient, for example, going on holiday or catching a
stomach bug. Taking current regulatory trends into considera-
tion it appears that model-based RL systems (MB-RL) have the
best chance to be approved for adaptive personalization after
delivery to the patients, as they can quantitatively predict the
consequences of their actions and monitor their performance

and effectiveness with respect to their own predictions and that
of clinical references models to ensure patient safety.
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Key issues

• Maintaining normoglycemia is crucial in patients with diabetes mellitus or severe illness and is usually achieved by administration

of insulin.

• An artificial pancreas system for closed-loop insulin delivery consists of a continuous glucose monitoring device, an algorithm calculating

the correct amount of insulin and a pump delivering insulin.

• Current challenges for calculation of the correct dose include technical issues most notably with regard to the time delay between

changes in the glucose concentration and the maximum effect of insulin.

• Use of newly identified substances for glucose regulation, such as glucagon or amylin, increases both the required flexibility and the

complexity of the approach.

• Have reliable and safe coverage for all feasible metabolic states and to respond appropriately in novel situations.

• The individualized treatment regimes and the complex glucose regulating parameters elevate the need for smart algorithms that have

reliable and safe coverage for all feasible metabolic states and respond appropriately in novel situations.

• Algorithms used in the past were initially based on model predictive control or proportional integral derivative control.

• Machine learning algorithms and especially reinforcement learning algorithms provide the advantages to learn the individual glucose

pattern of a diabetic patient in spite of a time delay and to handle complex and external information to provide adaptive drug delivery

after a learning procedure.

• For machine learning approaches, care must be taken to acquire appropriate data for the learning phase whereby the data should be

representative, sufficient and optimally noise-reduced.

• To maximize the effectiveness of data-driven approaches, cross-validation and regularization techniques should be used and an

extensive testing phase has to be performed.

• Glucose regulation is more than just beta-cell dynamics, therefore we need smarter algorithms that learn to take into account the

bigger picture.
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